Substrate utilization during exercise and recovery at moderate altitude.

نویسندگان

  • Keisho Katayama
  • Kazushige Goto
  • Koji Ishida
  • Futoshi Ogita
چکیده

Recent studies have shown that exercise training at moderate altitude or in moderate hypoxia improved glycemic parameters. From these data, it has been supposed that endurance exercise in moderate hypoxia affects substrate utilization and that exposure to moderate hypoxia in combination with exercise may be utilized as part of metabolic or diabetes prevention program. However, the influence of exercise at moderate hypoxia on circulating metabolites and hormones in terms of substrate utilization is unclear. The purpose of this study was to elucidate the influence of exercise in moderate hypoxia on substrate utilization. We determined cardiorespiratory, metabolic, and hormonal parameters during exercise and postexercise recovery at a simulated moderate altitude of 2000 m, and then we compared these variables with values obtained at sea level. Seven men participated in this study; subjects reported to the laboratory on 4 occasions. Two maximal exercise tests were performed to estimate peak oxygen uptake at the simulated 2000-m altitude and sea level on different days. Afterward, submaximal exercise tests were carried out at a simulated altitude of 2000 m or sea level, separated by 1 week. Subjects performed submaximal exercise at the same relative exercise intensity (50% peak oxygen uptake) at a simulated altitude of 2000 m and at sea level for 30 minutes. The tests were performed in random order, and subjects were blinded to the respective altitudes. Venous blood samples and expired gases were obtained before, during exercise (15 and 30 minutes), and during postexercise recovery periods (15, 30, 45, and 60 minutes). The respiratory exchange ratio during exercise and recovery at moderate altitude was greater than at sea level. The epinephrine and norepinephrine concentrations during exercise and recovery were higher (P < .05) at moderate altitude than at sea level. Free fatty acids and glycerol concentrations during recovery were lower (P < .05) at moderate altitude than at sea level. These results suggest that carbohydrate utilization is increased during exercise and postexercise recovery period in moderate hypoxia as compared with normoxia. It is also suggested that moderate hypoxia influences the changes in circulating metabolites and hormones in terms of substrate metabolism during exercise and the recovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate utilization during exercise in active people13

When people walk at low intensity after fasting, the energy needed is provided mostly by oxidation of plasma fatty acids. As exercise intensity increases (eg, to moderate running), plasma fatty acid turnover does not increase and the additional energy is obtained by utilization of muscle glycogen, blood glucose, and intramuscular triglyceride. Further increases in exercise intensity are fueled ...

متن کامل

Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle.

Glucose metabolism increases in hypoxia and can be influenced by endogenous adenosine, but the role of adenosine for regulating glucose metabolism at rest or during exercise in hypoxia has not been elucidated in humans. We studied the effects of exogenous adenosine on human skeletal muscle glucose uptake and other blood energy substrates [free fatty acid (FFA) and lactate] by infusing adenosine...

متن کامل

Substrate utilization during and after exercise in mild cystic fibrosis.

PURPOSE To determine substrate utilization and energy expenditure during maximal and submaximal exercise and recovery in adolescents with cystic fibrosis (CF) and healthy age-matched controls (C). METHODS Ten clinically stable CF patients (four girls, six boys; age = 10-22 yr) were matched by body mass index, age, gender, and Tanner stage to healthy controls. Subjects completed VO(2peak) test...

متن کامل

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

Effect of moderate altitude on peripheral muscle oxygenation during leg resistance exercise in young males.

Training at moderate altitude (~1800m) is often used by athletes to stimulate muscle hypoxia. However, limited date is available on peripheral muscle oxidative metabolism at this altitude (1800AL). The purpose of this study was to determine whether acute exposure to 1800AL alters muscle oxygenation in the vastus lateralis muscle during resistance exercise. Twenty young active male subjects (age...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Metabolism: clinical and experimental

دوره 59 7  شماره 

صفحات  -

تاریخ انتشار 2010